Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 35(11): 2044-2059.e8, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37890478

RESUMO

Amino acid metabolism has been actively investigated as a potential target for antitumor therapy, but how it may alter the response to genotoxic chemotherapy remains largely unknown. Here, we report that the depletion of fumarylacetoacetate hydrolase (FAH), an enzyme that catalyzes the final step of tyrosine catabolism, reduced chemosensitivity in epithelial ovarian cancer (EOC). The expression level of FAH correlated significantly with chemotherapy efficacy in patients with EOC. Mechanistically, under genotoxic chemotherapy, FAH is oxidized at Met308 and translocates to the nucleus, where FAH-mediated tyrosine catabolism predominantly supplies fumarate. FAH-produced fumarate binds directly to REV1, resulting in the suppression of translesion DNA synthesis (TLS) and improved chemosensitivity. Furthermore, in vivo tyrosine supplementation improves sensitivity to genotoxic chemotherapeutics and reduces the occurrence of therapy resistance. Our findings reveal a unique role for tyrosine-derived fumarate in the regulation of TLS and may be exploited to improve genotoxic chemotherapy through dietary tyrosine supplementation.


Assuntos
DNA , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/tratamento farmacológico , Dano ao DNA , Tirosina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Fumaratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...